13 citations to https://www.mathnet.ru/rus/sm1495
  1. Tomasz Goliński, Grzegorz Jakimowicz, Aneta Sliżewska, “Banach Lie groupoid of partial isometries over the restricted Grassmannian”, Anal.Math.Phys., 15:2 (2025)  crossref
  2. Esteban Andruchow, Gustavo Corach, Lázaro Recht, Mathematical Physics Studies, Geometry, Topology and Operator Algebras, 2025, 121  crossref
  3. Esteban Andruchow, Gustavo Corach, Lázaro Recht, Mathematical Physics Studies, Geometry, Topology and Operator Algebras, 2025, 169  crossref
  4. Daniele Alessandrini, Olivier Guichard, Eugen Rogozinnikov, Anna Wienhard, “Noncommutative Coordinates for Symplectic Representations”, Memoirs of the AMS, 300:1504 (2024)  crossref
  5. Esteban Andruchow, Gustavo Corach, Lázaro Recht, “The Poincaré space of a C*-algebra”, Acta Sci. Math. (Szeged), 88:1-2 (2022), 131  crossref
  6. Retakh V., Rubtsov V., Sharygin G., “Noncommutative Cross-Ratio and Schwarz Derivative”, Integrable Systems and Algebraic Geometry: a Celebration of Emma Previato'S 65Th Birthday, Vol 2, London Mathematical Society Lecture Note Series, 459, eds. Donagi R., Shaska T., Cambridge Univ Press, 2020, 499–528  mathscinet  isi
  7. James F. Glazebrook, Operator Theory: Advances and Applications, 236, Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation, 2014, 205  crossref
  8. Dupre M.J., Glazebrook J.F., Previato E., “Differential Algebras with Banach-Algebra Coefficients I: From $C^*$-Algebras to the K-Theory of the Spectral Curve”, Complex Anal. Oper. Theory, 7:4 (2013), 739–763  crossref  mathscinet  zmath  isi  scopus
  9. Dupre M.J., Glazebrook J.F., Previato E., “Differential Algebras with Banach-Algebra Coefficients II: the Operator Cross-Ratio Tau-Function and the Schwarzian Derivative”, Complex Anal. Oper. Theory, 7:6 (2013), 1713–1734  crossref  mathscinet  zmath  isi  scopus
  10. Dupré M.J., Glazebrook J.F., Previato E., “Curvature of universal bundles of Banach algebras \invook Topics in operator theory. Volume 1. Operators, matrices and analytic functions”, Oper. Theory Adv. Appl., 202, Birkhäuser Verlag, Basel, 2010, 195–222  mathscinet  zmath  isi
1
2
Следующая