93 citations to https://www.mathnet.ru/rus/sm1663
  1. Simos Ichtiaroglou, The Dynamical Behaviour of our Planetary System, 1997, 21  crossref
  2. Dmitry V. Treschev, “An averaging method for Hamiltonian systems, exponentially close to integrable ones”, Chaos, 6:1 (1996), 6  crossref  mathscinet  zmath  isi  elib
  3. Chong-Qing Cheng, “Birkhoff-Kolmogorov-Arnold-Moser tori in convex Hamiltonian systems”, Comm Math Phys, 177:3 (1996), 529  crossref  mathscinet  adsnasa
  4. Marco J., “Transition Along the Chains of Invariant Tori for Analytic Hamiltonian Systems”, Ann. Inst. Henri Poincare-Phys. Theor., 64:2 (1996), 205–252  mathscinet  zmath  isi
  5. Ichtiaroglou S., “Non-Integrability in Hamiltonian Mechanics”, Celest. Mech. Dyn. Astron., 65:1-2 (1996), 21–31  crossref  mathscinet  adsnasa  isi
  6. H. W. Broer, G. B. Huitema, M. B. Sevryuk, Nonlinear Dynamical Systems and Chaos, 1996, 171  crossref
  7. G. Haller, S. Wiggins, “N-pulse homoclinic orbits in perturbations of resonant Hamiltonian systems”, Arch Rational Mech Anal, 130:1 (1995), 25  crossref  mathscinet  zmath  adsnasa
  8. М. Б. Севрюк, “Некоторые проблемы теории КАМ: условно-периодические движения в типичных системах”, УМН, 50:2(302) (1995), 111–124  mathnet  mathscinet  zmath  adsnasa; M. B. Sevryuk, “Some problems of the KAM-theory: conditionally-periodic motions in typical systems”, Russian Math. Surveys, 50:2 (1995), 341–353  crossref  isi
  9. S. B. Kuksin, First European Congress of Mathematics Paris, July 6–10, 1992, 1994, 123  crossref
  10. G. R. W. Quispel, M. B. Sevryuk, “KAM theorems for the product of two involutions of different types”, Chaos, 3:4 (1993), 757  crossref  mathscinet  zmath  adsnasa
Предыдущая
1
2
3
4
5
6
7
8
9
10
Следующая