58 citations to https://www.mathnet.ru/rus/sm3482
-
Grgoire Menet, “Duality for relative Prymians associated to K3 double covers of del Pezzo surfaces of degree 2”, Math. Z, 2014
-
Ljudmila Kamenova, Misha Verbitsky, “Families of Lagrangian fibrations on hyperkähler manifolds”, Advances in Mathematics, 260 (2014), 401
-
Grégoire Menet, “Beauville–Bogomolov lattice for a singular symplectic variety of dimension 4”, Journal of Pure and Applied Algebra, 2014
-
Misha Verbitsky, “Degenerate twistor spaces for hyperkähler manifolds”, Journal of Geometry and Physics, 2014
-
Andrey Soldatenkov, Misha Verbitsky, “<mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mi>k</mml:mi></mml:math>-symplectic structures and absolutely trianalytic subvarieties in hyperkähler manifolds”, Journal of Geometry and Physics, 2014
-
Ljudmila Kamenova, Steven Lu, Misha Verbitsky, “Kobayashi pseudometric on hyperkähler manifolds”, Journal of the London Mathematical Society, 90:2 (2014), 436
-
Apostol Apostolov, “Moduli spaces of polarized irreducible symplectic manifolds are not necessarily connected”, Annales de l'Institut Fourier, 64:1 (2014), 189
-
Sasha Ananʼin, Misha Verbitsky, “Any component of moduli of polarized hyperkähler manifolds is dense in its deformation space”, Journal de Mathématiques Pures et Appliquées, 2013
-
Justin Sawon, “Fibrations on four-folds with trivial canonical bundles”, Geom Dedicata, 2013
-
Misha Verbitsky, “Mapping class group and a global Torelli theorem for hyperkähler manifolds”, Duke Math. J., 162:15 (2013)