11 citations to https://www.mathnet.ru/rus/sm8708
-
Hui Liu, Yu Chen Wang, “Generic Existence of Infinitely Many Non-contractible Closed Geodesics on Compact Space Forms”, Acta. Math. Sin.-English Ser., 40:7 (2024), 1674
-
Hui Liu, Jian Wang, Jingzhi Yan, “The growth of the number of periodic orbits for annulus homeomorphisms and non-contractible closed geodesics on Riemannian or FinslerRP2”, Journal of Differential Equations, 357 (2023), 362
-
Liu S., Wang W., “A Review of the Index Method in Closed Geodesic Problem”, Acta. Math. Sin.-English Ser., 38:1 (2022), 85–96
-
Duan H.G., Liu H., “The Non-Contractibility of Closed Geodesics on Finsler Double-Struck Capital Rpn”, Acta. Math. Sin.-English Ser., 38:1 (2022), 1–21
-
Hui Liu, Yuchen Wang, “Multiplicity of non-contractible closed geodesics on Finsler compact space forms”, Calc. Var., 61:6 (2022)
-
H. Duan, Y. Long, Ch. Zhu, “Index iteration theories for periodic orbits: old and new”, Nonlinear Anal.-Theory Methods Appl., 201:SI (2020), 111999
-
Wang W., “Two Closed Geodesics on Compact Bumpy Finsler Manifolds”, Asian J. Math., 24:6 (2020), 985–994
-
H. Liu, “The optimal lower bound estimation of the number of closed geodesics on finsler compact space form s2n+1/gamma”, Calc. Var. Partial Differ. Equ., 58:3 (2019), 107
-
H. Liu, Y. Long, Y. Xiao, “The existence of two non-contractible closed geodesics on every bumpy Finsler compact space form”, Discrete Contin. Dyn. Syst., 38:8 (2018), 3803–3829
-
H. Liu, “The Fadell-Rabinowitz index and multiplicity of non-contractible closed geodesics on Finsler $\mathbb{R}P^n$”, J. Differential Equations, 262:3 (2017), 2540–2553