11 citations to https://www.mathnet.ru/rus/sm8708
  1. Hui Liu, Yu Chen Wang, “Generic Existence of Infinitely Many Non-contractible Closed Geodesics on Compact Space Forms”, Acta. Math. Sin.-English Ser., 40:7 (2024), 1674  crossref
  2. Hui Liu, Jian Wang, Jingzhi Yan, “The growth of the number of periodic orbits for annulus homeomorphisms and non-contractible closed geodesics on Riemannian or FinslerRP2”, Journal of Differential Equations, 357 (2023), 362  crossref
  3. Liu S., Wang W., “A Review of the Index Method in Closed Geodesic Problem”, Acta. Math. Sin.-English Ser., 38:1 (2022), 85–96  crossref  mathscinet  isi  scopus
  4. Duan H.G., Liu H., “The Non-Contractibility of Closed Geodesics on Finsler Double-Struck Capital Rpn”, Acta. Math. Sin.-English Ser., 38:1 (2022), 1–21  crossref  mathscinet  isi
  5. Hui Liu, Yuchen Wang, “Multiplicity of non-contractible closed geodesics on Finsler compact space forms”, Calc. Var., 61:6 (2022)  crossref
  6. H. Duan, Y. Long, Ch. Zhu, “Index iteration theories for periodic orbits: old and new”, Nonlinear Anal.-Theory Methods Appl., 201:SI (2020), 111999  crossref  mathscinet  zmath  isi
  7. Wang W., “Two Closed Geodesics on Compact Bumpy Finsler Manifolds”, Asian J. Math., 24:6 (2020), 985–994  crossref  mathscinet  isi
  8. H. Liu, “The optimal lower bound estimation of the number of closed geodesics on finsler compact space form s2n+1/gamma”, Calc. Var. Partial Differ. Equ., 58:3 (2019), 107  crossref  mathscinet  isi
  9. H. Liu, Y. Long, Y. Xiao, “The existence of two non-contractible closed geodesics on every bumpy Finsler compact space form”, Discrete Contin. Dyn. Syst., 38:8 (2018), 3803–3829  crossref  mathscinet  zmath  isi  scopus
  10. H. Liu, “The Fadell-Rabinowitz index and multiplicity of non-contractible closed geodesics on Finsler $\mathbb{R}P^n$”, J. Differential Equations, 262:3 (2017), 2540–2553  crossref  mathscinet  zmath  isi  scopus
1
2
Следующая