49 citations to https://www.mathnet.ru/rus/sm90
-
Leonidas Karpathopoulos, Andronikos Paliathanasis, Michael Tsamparlis, “Lie and Noether point symmetries for a class of nonautonomous dynamical systems”, Journal of Mathematical Physics, 58:8 (2017)
-
Fatemeh Ahangari, “Comprehensive analysis of the symmetries and conservation laws of the geodesic equations for a particular string inspired FRLW solution”, Communications in Nonlinear Science and Numerical Simulation, 42 (2017), 645
-
Shabbir G. Mahomed F.M. Qureshi M.A., “Proper projective symmetry in the most general non-static spherically symmetric four-dimensional Lorentzian manifolds”, Int. J. Geom. Methods Mod. Phys., 13:2 (2016), 1650009
-
Dutta S., Lakshmanan M., Chakraborty S., “Quintom cosmological model and some possible solutions using Lie and Noether symmetries”, Int. J. Mod. Phys. D, 25:14 (2016), 1650110
-
Sourav Dutta, Madan Mohan Panja, Subenoy Chakraborty, “A scalar field dark energy model: Noether symmetry approach”, Gen Relativ Gravit, 48:4 (2016)
-
Andronikos Paliathanasis, Michael Tsamparlis, “Lie and Noether point symmetries of a class of quasilinear systems of second-order differential equations”, Journal of Geometry and Physics, 107 (2016), 45
-
Sourav Dutta, Subenoy Chakraborty, “A study of phantom scalar field cosmology using Lie and Noether symmetries”, Int. J. Mod. Phys. D, 25:05 (2016), 1650051
-
Sourav Dutta, Madan Mohan Panja, Subenoy Chakraborty, “A study of dynamical equations for non-minimally coupled scalar field using Noether symmetric approach”, Mod. Phys. Lett. A, 31:19 (2016), 1650116
-
A. Paliathanasis, M. Tsamparlis, “The geometric origin of Lie point symmetries of the Schrödinger and the Klein–Gordon equations”, Int. J. Geom. Methods Mod. Phys, 2014, 1450037
-
Michael Tsamparlis, “Geometrization of Lie and Noether symmetries with applications in Cosmology”, J. Phys.: Conf. Ser, 453 (2013), 012020