8 citations to https://www.mathnet.ru/rus/smj1532
  1. Liu Ch., Shi W., Wu X., “Numerical Analysis of An Energy-Conservation Scheme For Two-Dimensional Hamiltonian Wave Equations With Neumann Boundary Conditions”, Int. J. Numer. Anal. Model., 16:2 (2019), 319–339  mathscinet  zmath  isi
  2. Kudryavtsev A.E., Lizunova M.A., “Search For Long-Living Topological Solutions of the Nonlinear Phi(4) Field Theory”, Phys. Rev. D, 95:5 (2017), 056009  crossref  mathscinet  isi  scopus
  3. О. Ф. Окстоби, И. В. Барашенков, “Асимптотическое разложение для раскачивающегося кинка”, ТМФ, 159:3 (2009), 527–535  mathnet  crossref  mathscinet  zmath  adsnasa; O. F. Oxtoby, I. V. Barashenkov, “Asymptotic expansion of the wobbling kink”, Theoret. and Math. Phys., 159:3 (2009), 863–869  crossref  isi
  4. Barashenkov I.V., Oxtoby O.F., “Wobbling kinks in phi(4) theory”, Physical Review E, 80:2, Part 2 (2009), 026608  crossref  mathscinet  adsnasa  isi  scopus
  5. Garcia M.G., Omel'yanov G.A., “Kink-Antikink Interaction for Semilinear Wave Equations with a Small Parameter”, Electronic Journal of Differential Equations, 2009, 45  mathscinet  isi
  6. Kulagin D.A., Omel'yanov G.A., “Interaction of kinks for semilinear wave equations with a small parameter”, Nonlinear Analysis–Theory Methods & Applications, 65:2 (2006), 347–378  crossref  mathscinet  zmath  isi  scopus
  7. Sheng Q., Khaliq A.Q.M., Voss D.A., “Numerical simulation of two–dimensional sine–Gordon solitons via a split cosine scheme”, Mathematics and Computers in Simulation, 68:4 (2005), 355–373  crossref  mathscinet  zmath  isi  scopus
  8. О. М. Киселев, “Асимптотика решений многомерных интегрируемых уравнений и их возмущений”, Уравнения математической физики, СМФН, 11, МАИ, М., 2004, 3–149  mathnet  mathscinet  zmath; O. M. Kiselev, “Asymptotics of solutions of higher-dimensional integrable equations and their perturbations”, Journal of Mathematical Sciences, 138:6 (2006), 6067–6230  crossref  elib