23 citations to https://www.mathnet.ru/rus/tm263
  1. Akishev G., “An Inequality of Different Metrics in the Generalized Lorentz Space”, Tr. Inst. Mat. Mekhaniki URO RAN, 24:4 (2018), 5–18  crossref  mathscinet  isi
  2. Akishev G., “Estimations of the Best M - Term Approximations of Functions in the Lorentz Space With Constructive Methods”, Bull. Karaganda Univ-Math., 87:3 (2017), 13–26  crossref  mathscinet  isi
  3. Ydyrys A. Sarybekova L. Tleukhanova N., “The multipliers of multiple trigonometric Fourier series”, Open Eng., 6:1 (2016), 367–371  crossref  isi  elib  scopus
  4. Nursultanov E., Ruzhansky M., Tikhonov S., “Nikolskii Inequality and Besov, Triebel-Lizorkin, Wiener and Beurling Spaces on Compact Homogeneous Manifolds”, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 16:3 (2016), 981–1017  mathscinet  zmath  isi
  5. K. A. Bekmaganbetov, Applied and Numerical Harmonic Analysis, Methods of Fourier Analysis and Approximation Theory, 2016, 149  crossref
  6. Г. А. Акишев, “О порядках приближения функций многих переменных в пространстве Лоренца”, Тр. ИММ УрО РАН, 22:4 (2016), 13–28  mathnet  crossref  isi  scopus; G. A. Akishev, “On approximation orders of functions of several variables in the Lorentz space”, Proc. Steklov Inst. Math. (Suppl.), 300:1 (2018), 9–24  mathnet  crossref
  7. Г. А. Акишев, “Оценки колмогоровских поперечников классов Никольского — Бесова — Аманова в пространстве Лоренца”, Тр. ИММ УрО РАН, 21, № 4, 2015, 3–13  mathnet  mathscinet  elib; G. A. Akishev, “Estimates for Kolmogorov widths of the Nikol'skii — Besov — Amanov classes in the Lorentz space”, Proc. Steklov Inst. Math., 296, suppl. 1 (2017), S1–S12  crossref  isi
  8. Lars-Erik Persson, Lyazzat Sarybekova, Nazerke Tleukhanova, Springer Proceedings in Mathematics, 6, Analysis for Science, Engineering and Beyond, 2012, 305  crossref
  9. M. I. Dyachenko, “Local smoothness of the conjugate functions”, Eurasian Math. J., 2:2 (2011), 31–59  mathnet  mathscinet  zmath
  10. Nursultanov E., Tikhonov S., “Net spaces and boundedness of integral operators”, J. Geom. Anal., 21:4 (2011), 950–981  crossref  mathscinet  zmath  isi  elib  scopus
Предыдущая
1
2
3
Следующая