10 citations to https://www.mathnet.ru/rus/tm3341
  1. Henna Koivusalo, Jean Lagacé, Michael Björklund, Tobias Hartnick, “Sharp density discrepancy for cut and project sets an approach via lattice point counting”, Monatsh Math, 2025  crossref
  2. Michael Dymond, Vojtěch Kaluža, “Divergence of separated nets with respect to displacement equivalence”, Geom Dedicata, 218:1 (2024)  crossref
  3. Michael Dymond, Vojtěch Kaluža, “Highly irregular separated nets”, Isr. J. Math., 253:2 (2023), 501  crossref
  4. Smilansky Y., Solomon Ya., “A Dichotomy For Bounded Displacement Equivalence of Delone Sets”, Ergod. Theory Dyn. Syst., 42:8 (2022), 2693–2710  crossref  isi  scopus
  5. Yotam Smilansky, Yaar Solomon, “Discrepancy and rectifiability of almost linearly repetitive Delone sets”, Nonlinearity, 35:12 (2022), 6204  crossref
  6. Frettloeh D., Smilansky Y., Solomon Ya., “Bounded Displacement Non-Equivalence Insubstitution Tilings”, J. Comb. Theory Ser. A, 177 (2021), 105326  crossref  mathscinet  isi
  7. Solomon Ya., “Continuously Many Bounded Displacement Non-Equivalences in Substitution Tiling Spaces”, J. Math. Anal. Appl., 492:1 (2020), 124426  crossref  mathscinet  isi
  8. Dymond M., Kaluza V., Kopecka E., “Mapping N Grid Points Onto a Square Forces An Arbitrarily Large Lipschitz Constant”, Geom. Funct. Anal., 28:3 (2018), 589–644  crossref  mathscinet  zmath  isi
  9. Dymarz T., Kelly M., Li S., Lukyanenko A., “Separated Nets in Nilpotent Groups”, Indiana Univ. Math. J., 67:3 (2018), 1143–1183  crossref  mathscinet  isi
  10. Isabel Cortez M., Navas A., “Some examples of repetitive, nonrectifiable Delone sets”, Geom. Topol., 20:4 (2016), 1909–1939  crossref  mathscinet  zmath  isi  scopus