17 citations to https://www.mathnet.ru/rus/tmf6182
-
M. N. Kuznetsova, “Classification of a subclass of quasilinear two-dimensional lattices by means of characteristic algebras”, Уфимск. матем. журн., 11:3 (2019), 110–131
; Ufa Math. J., 11:3 (2019), 109–131
-
М. Н. Попцова, И. Т. Хабибуллин, “Алгебраические свойства квазилинейных двумеризованных цепочек, связанные с интегрируемостью”, Уфимск. матем. журн., 10:3 (2018), 89–109
; M. N. Poptsova, I. T. Habibullin, “Algebraic properties of quasilinear two-dimensional lattices connected with integrability”, Ufa Math. J., 10:3 (2018), 86–105
-
А. К. Погребков, “Высшие разностные уравнения Хироты и их редукции”, ТМФ, 197:3 (2018), 444–463
; A. K. Pogrebkov, “Higher Hirota difference equations and their reductions”, Theoret. and Math. Phys., 197:3 (2018), 1779–1796
-
Ismagil Habibullin, Mariya Poptsova, “Classification of a Subclass of Two-Dimensional Lattices via Characteristic Lie Rings”, SIGMA, 13 (2017), 073, 26 pp.
-
А. К. Погребков, “Коммутаторные тождества на ассоциативных алгебрах, разностное неабелево уравнение Хироты и его редукции”, ТМФ, 187:3 (2016), 433–446
; A. K. Pogrebkov, “Commutator identities on associative algebras, the non-Abelian Hirota difference equation and its reductions”, Theoret. and Math. Phys., 187:3 (2016), 823–834
-
А. К. Погребков, “Разностное уравнение Хироты: метод обратной задачи рассеяния, преобразование Дарбу и солитоны”, ТМФ, 181:3 (2014), 538–552
; A. K. Pogrebkov, “Hirota difference equation: Inverse scattering transform, Darboux transformation, and solitons”, Theoret. and Math. Phys., 181:3 (2014), 1585–1598
-
A. K. Pogrebkov, “Hirota difference equation and a commutator identity on an associative algebra”, Алгебра и анализ, 22:3 (2010), 191–205
; St. Petersburg Math. J., 22:3 (2011), 473–483