60 citations to https://www.mathnet.ru/rus/tmf8550
-
X.-X. Xu, M. Xu, “A family of integrable different-difference equations, its Hamiltonian structure, and Darboux–Bäcklund transformation”, Discrete Dyn. Nat. Soc., 2018, 4152917
-
X.-M. Chen, X.-B. Hu, F. Mueller-Hoissen, “Non-isospectral extension of the Volterra lattice hierarchy, and Hankel determinants”, Nonlinearity, 31:9 (2018), 4393–4422
-
N. Liu, X.-Y. Wen, Ya. Liu, “Fission and fusion interaction phenomena of the discrete kink multi-soliton solutions for the Chen-Lee-Liu lattice equation”, Mod. Phys. Lett. B, 32:19 (2018), 1850211
-
И. Т. Хабибуллин, А. Р. Хакимова, “Прямой алгоритм построения операторов рекурсии и пар Лакса для интегрируемых моделей”, ТМФ, 196:2 (2018), 294–312
; I. T. Habibullin, A. R. Khakimova, “A direct algorithm for constructing recursion operators and Lax pairs for integrable models”, Theoret. and Math. Phys., 196:2 (2018), 1200–1216
-
I. T. Habibullin, A. R. Khakimova, “On the recursion operators for integrable equations”, J. Phys. A-Math. Theor., 51:42 (2018), 425202
-
H.-T. Wang, X.-Y. Wen, “Dynamics of multi-soliton and breather solutions for a new semi-discrete coupled system related to coupled NLS and coupled complex mKdV equations”, Mod. Phys. Lett. B, 32:28 (2018), 1850340
-
J.-P. Yu, W.-X. Ma, Y.-L. Sun, Ch. M. Khalique, “N-fold Darboux transformation and conservation laws of the modified Volterra lattice”, Mod. Phys. Lett. B, 32:33 (2018), 1850409
-
И. Т. Хабибуллин, А. Р. Хакимова, “Инвариантные многообразия и пары Лакса для интегрируемых нелинейных цепочек”, ТМФ, 191:3 (2017), 369–388
; I. T. Habibullin, A. R. Khakimova, “Invariant manifolds and Lax pairs for integrable nonlinear chains”, Theoret. and Math. Phys., 191:3 (2017), 793–810
-
L. Peng, “Symmetries, conservation laws, and Noether's theorem for differential-difference equations”, Stud. Appl. Math., 139:3 (2017), 457–502
-
I. T. Habibullin, A. R. Khakimova, M. N. Poptsova, “On a method for constructing the Lax pairs for nonlinear integrable equations”, J. Phys. A-Math. Theor., 49:3 (2016), 035202