35 citations to https://www.mathnet.ru/rus/tmf8777
  1. Fabio Nicola, “The wave function of stabilizer states and the Wehrl conjecture”, Journal de Mathématiques Pures et Appliquées, 2025, 103778  crossref
  2. Salman Beigi, Saleh Rahimi-Keshari, “A Meta Logarithmic-Sobolev Inequality for Phase-Covariant Gaussian Channels”, Ann. Henri Poincaré, 2024  crossref
  3. A. S. Holevo, “Information Capacity of State Ensembles and Observables”, Lobachevskii J Math, 45:6 (2024), 2509  crossref
  4. Zacharie Van Herstraeten, Nicolas J. Cerf, Saikat Guha, Christos N. Gagatsos, “Majorization theoretical approach to entanglement enhancement via local filtration”, Phys. Rev. A, 110:4 (2024)  crossref
  5. A. S. Holevo, “An optimization problem concerning noise in quantum measurement channels”, Lobachevskii J. Math., 44:6 (2023), 2033–2043  mathnet  crossref
  6. Alexander S. Holevo, Sergey N. Filippov, “Quantum Gaussian maximizers and log-Sobolev inequalities”, Lett. Math. Phys., 113 (2023), 10–23  mathnet  crossref
  7. Xiao-yu Chen, Maoke Miao, Rui Yin, Jiantao Yuan, “Bosonic Gaussian channel and Gaussian witness entanglement criterion of continuous variables”, Phys. Rev. Research, 5:3 (2023)  crossref
  8. Brandsen S., Geng I.J., Gour G., “What Is Entropy? a Perspective From Games of Chance”, Phys. Rev. E, 105:2 (2022), 024117  crossref  mathscinet  isi
  9. А. С. Холево, “Логарифмическое неравенство Соболева и квантовые гауссовcкие максимизаторы”, УМН, 77:4(466) (2022), 205–206  mathnet  crossref  mathscinet  zmath  adsnasa; A. S. Holevo, “Logarithmic Sobolev inequality and Hypothesis of Quantum Gaussian Maximizers”, Russian Math. Surveys, 77:4 (2022), 766–768  crossref  isi
  10. Zhuang Q., “Quantum-Enabled Communication Without a Phase Reference”, Phys. Rev. Lett., 126:6 (2021), 060502  crossref  mathscinet  isi
1
2
3
4
Следующая