75 citations to https://www.mathnet.ru/rus/tvp151
-
Boche H., Cai M., Notzel J., Deppe Ch., “Secret Message Transmission Over Quantum Channels Under Adversarial Quantum Noise: Secrecy Capacity and Super-Activation”, J. Math. Phys., 60:6 (2019), 062202
-
Kuramochi Yu., “Quantum Incompatibility of Channels With General Outcome Operator Algebras”, J. Math. Phys., 59:4 (2018), 042203
-
Mukhamedov F., Watanabe N., “On S-Mixing Entropy of Quantum Channels”, Quantum Inf. Process., 17:6 (2018), UNSP 148
-
Davis N., Shirokov M.E., Wilde M.M., “Energy-Constrained Two-Way Assisted Private and Quantum Capacities of Quantum Channels”, Phys. Rev. A, 97:6 (2018), 062310
-
Fukuda M. Gour G., “Additive Bounds of Minimum Output Entropies for Unital Channels and an Exact Qubit Formula”, IEEE Trans. Inf. Theory, 63:3 (2017), 1818–1828
-
Zhuang Q., Zhu E.Y., Shor P.W., “Additive Classical Capacity of Quantum Channels Assisted By Noisy Entanglement”, Phys. Rev. Lett., 118:20 (2017), 200503
-
Г. Г. Амосов, И. Ю. Ждановский, “О структуре алгебры, порожденной некоммутативным операторным графом, демонстрирующим явление суперактивации для пропускной способности с нулевой ошибкой”, Матем. заметки, 99:6 (2016), 929–932
; G. G. Amosov, I. Yu. Zhdanovskii, “Structure of the Algebra Generated by a Noncommutative Operator Graph which Demonstrates the Superactivation Phenomenon for Zero-Error Capacity”, Math. Notes, 99:6 (2016), 924–927
-
Jason Crann, David W. Kribs, Rupert H. Levene, Ivan G. Todorov, “Private algebras in quantum information and infinite-dimensional complementarity”, Journal of Mathematical Physics, 57:1 (2016)
-
Г. Г. Амосов, “Оценка выходной энтропии тензорного произведения двух квантовых каналов”, ТМФ, 182:3 (2015), 453–464
; G. G. Amosov, “Estimating the output entropy of a tensor product of two quantum channels”, Theoret. and Math. Phys., 182:3 (2015), 397–406
-
А. С. Холево, “Гауссовские оптимизаторы и проблема аддитивности в квантовой теории информации”, УМН, 70:2(422) (2015), 141–180
; A. S. Holevo, “Gaussian optimizers and the additivity problem in quantum information theory”, Russian Math. Surveys, 70:2 (2015), 331–367