33 citations to https://www.mathnet.ru/rus/tvp2821
-
Ileana Iribarren, José R. León, “Central limit theorem for solutions of random initialized differential equations: a simple proof”, International Journal of Stochastic Analysis, 2006:1 (2006)
-
J.M. Medina, B. Frias, “A Synthesis of a<tex>$1/f$</tex>Process Via Sobolev Spaces and Fractional Integration”, IEEE Trans. Inform. Theory, 51:12 (2005), 4278
-
O. E. Barndorff-Nielsen, N. N. Leonenko, “Burgers' turbulence problem with linear or quadratic external potential”, Journal of Applied Probability, 42:2 (2005), 550
-
Fernanda Cipriano, Stochastic Analysis and Mathematical Physics II, 2003, 29
-
M.D. Ruiz-Medina, J.M. Angulo, V.V. Anh, “Scaling limit solution of a fractional Burgers equation”, Stochastic Processes and their Applications, 93:2 (2001), 285
-
Ю. Ю. Бахтин, “Функциональная центральная предельная теорема для преобразованных решений многомерного уравнения Бюргерса со случайными начальными данными”, Теория вероятн. и ее примен., 46:3 (2001), 427–448
; Yu. Yu. Bakhtin, “A Functional Central Limit Theorem for Transformed Solutions of the Multidimensional Burgers Equation with Random Initial Data”, Theory Probab. Appl., 46:3 (2002), 387–405
-
V. V. Anh, N. N. Leonenko, “Spectral Analysis of Fractional Kinetic Equations with Random Data”, Journal of Statistical Physics, 104:5-6 (2001), 1349
-
Bakhtin Y.Y., “A functional central limit theorem for transformed solutions to the multidimensional Burgers equation with random initial data”, Doklady Mathematics, 61:3 (2000), 417–419
-
V.V. Anh, N.N. Leonenko, “Scaling laws for fractional diffusion-wave equations with singular data”, Statistics & Probability Letters, 48:3 (2000), 239
-
Luisa Beghin, Viktoria P. Knopova, Nikolai N. Leonenko, Enzo Orsingher, “Gaussian Limiting Behavior of the Rescaled Solution to the Linear Korteweg–de Vries Equation with Random Initial Conditions”, Journal of Statistical Physics, 99:3-4 (2000), 769