33 citations to https://www.mathnet.ru/rus/tvp2821
  1. A. Dermoune, S. Hamadène, Y. Ouknine, “Limit theorem for the statistical solution of Burgers equation”, Stochastic Processes and their Applications, 81:2 (1999), 217  crossref
  2. Nikolai N. Leonenko, Wojbor A. Woyczynski, “Parameter identification for singular random fields arising in Burgers' turbulence”, Journal of Statistical Planning and Inference, 80:1-2 (1999), 1  crossref
  3. V.V. Anh, N.N. Leonenko, “Non-Gaussian scenarios for the heat equation with singular initial conditions”, Stochastic Processes and their Applications, 84:1 (1999), 91  crossref
  4. Ю. Ю. Бахтин, “Закон повторного логарифма для решения уравнения Бюргерса со случайными начальными данными”, Матем. заметки, 64:6 (1998), 812–823  mathnet  crossref  mathscinet  zmath; Yu. Yu. Bakhtin, “The law of the iterated logarithm for the solution of the Burgers equation with random initial data”, Math. Notes, 64:6 (1998), 704–713  crossref  isi
  5. N.N. Leonenko, W.A. Woyczynski, “Exact parabolic asymptotics for singular n-D Burgers' random fields: Gaussian approximation”, Stochastic Processes and their Applications, 76:2 (1998), 141  crossref
  6. Nikolai N. Leonenko, Wojbor A. Woyczynski, “Scaling Limits of Solutions of the Heat Equation for Singular Non-Gaussian Data”, Journal of Statistical Physics, 91:1-2 (1998), 423  crossref
  7. Donatas Surgailis, The IMA Volumes in Mathematics and its Applications, 85, Stochastic Models in Geosystems, 1997, 427  crossref
  8. H. Holden, N. H. Risebro, “Conservation laws with a random source”, Appl Math Optim, 36:2 (1997), 229  crossref
  9. Nikolai N. Leonenko, Enzo Orsingher, Victoria N. Parkhomenko, “On the rate of convergence to the normal law for solutions of the Burgers equation with singular initial data”, J Stat Phys, 82:3-4 (1996), 915  crossref
  10. Donatas Surgailis, The IMA Volumes in Mathematics and its Applications, 77, Nonlinear Stochastic PDEs, 1996, 137  crossref
Предыдущая
1
2
3
4
Следующая