12 citations to https://www.mathnet.ru/rus/tvp4480
  1. А. А. Муравлёв, “О соответствии между задачами об оптимальной остановке на конечном и бесконечном временных интервалах”, Теория вероятн. и ее примен., 70:1 (2025), 193–196  mathnet  crossref  mathscinet; A. A. Muravlev, “On the correspondence between optimal stopping problems with finite and infinite time horizons”, Theory Probab. Appl., 70:1 (2025), 159–161  crossref
  2. P. Johnson, J.L. Pedersen, G. Peskir, C. Zucca, “Detecting the presence of a random drift in Brownian motion”, Stochastic Processes and their Applications, 150 (2022), 1068  crossref
  3. Muravlev A., Zhitlukhin M., “A Bayesian Sequential Test For the Drift of a Fractional Brownian Motion”, Adv. Appl. Probab., 52:4 (2020), 1308–1324  crossref  mathscinet  isi
  4. Kruse T., Strack Ph., “An Inverse Optimal Stopping Problem For Diffusion Processes”, Math. Oper. Res., 44:2 (2019), 423–439  crossref  mathscinet  isi
  5. Albert N. Shiryaev, Probability Theory and Stochastic Modelling, 93, Stochastic Disorder Problems, 2019, 277  crossref
  6. Alexey Muravlev, Mikhail Zhitlukhin, MATRIX Book Series, 2, 2017 MATRIX Annals, 2019, 667  crossref
  7. Sebastian Jobjörnsson, Sören Christensen, “Anscombe's model for sequential clinical trials revisited”, Sequential Analysis, 37:1 (2018), 115  crossref
  8. Hannah Dyrssen, Erik Ekström, “Sequential testing of a Wiener process with costly observations”, Sequential Analysis, 37:1 (2018), 47  crossref
  9. Thomas Kruse, Philipp Strack, “An Inverse Optimal Stopping Problem for Diffusion Processes”, SSRN Journal, 2017  crossref
  10. Ekstrom E., Vaicenavicius J., “Bayesian Sequential Testing of the Drift of a Brownian Motion”, ESAIM-Prob. Stat., 19 (2015), 626–648  crossref  mathscinet  zmath  isi
1
2
Следующая