611 citations to https://www.mathnet.ru/rus/tvp4645
-
Liad Lea Didi, Tomer Gafni, Kobi Cohen, 2024 60th Annual Allerton Conference on Communication, Control, and Computing, 2024, 1
-
Yang Du, Susu Zhang, “Detecting Compromised Items With Response Times Using a Bayesian Change-Point Approach”, Journal of Educational and Behavioral Statistics, 2024
-
А. А. Боровков, “Об асимптотическом подходе к задаче о разладке и экспоненциальной сходимости в эргодической теореме для цепей Маркова”, Теория вероятн. и ее примен., 68:3 (2023), 456–482
; A. A. Borovkov, “On an asymptotic approach to the change point detection problem and exponential
convergence rate in the ergodic theorem for Markov chains”, Theory Probab. Appl., 68:3 (2023), 370–391
-
В. И. Лотов, А. С. Тарасенко, “Исследование характеристик процедуры кумулятивных сумм в задаче скорейшего обнаружения разладки”, Сиб. электрон. матем. изв., 20:2 (2023), 987–1000
-
Jason J. Ford, Justin M. Kennedy, Caitlin Tompkins, Jasmin James, Aaron McFadyen, “Exactly Optimal Quickest Change Detection of Markov Chains”, IEEE Control Syst. Lett., 2023, 1
-
Xuyuan Han, Zhenya Liu, “The optimal time to buy and hold stock in a reversal”, Int. J Fin Econ, 2023
-
Chao Gu, Suthakaran Ratnasingam, “Real-time change point detection in linear models using the ranking selection procedure”, Sequential Analysis, 42:2 (2023), 129
-
Mahdi Shafiee Kamalabad, Roger Leenders, Joris Mulder, “What is the Point of Change? Change Point Detection in Relational Event Models”, Social Networks, 74 (2023), 166
-
Liyan Xie, George V. Moustakides, Yao Xie, “Window-Limited CUSUM for Sequential Change Detection”, IEEE Trans. Inform. Theory, 69:9 (2023), 5990
-
Min-Xiang Hsu, Yu-Chih Huang, Wen-Hsuan Li, Che-Fu Chu, Pin-Jui Wu, “An Efficient Algorithm and Quantization for Fully Distributed Sequential Change Detection”, IEEE Trans. Commun., 71:10 (2023), 6088