53 citations to https://www.mathnet.ru/rus/ufn1452
  1. Bruening J., Demidov V.V., Geyler V.A., “Fermi Surfaces of Crystals in a High Magnetic Field”, International Journal of Nanoscience, Vol 2, No 6, International Journal of Nanoscience Series, 2, no. 6, ed. Suris R., World Scientific Publ Co Pte Ltd, 2003, 603–610  crossref  isi
  2. De Leo R., “Numerical Analysis of the Novikov Problem of a Normal Metal in a Strong Magnetic Field”, SIAM J. Appl. Dyn. Syst., 2:4 (2003), 517–545  crossref  mathscinet  zmath  adsnasa  isi  scopus
  3. Й. Брюнинг, С. Ю. Доброхотов, К. В. Панкрашкин, “Асимптотика нижних зон Ландау в сильном магнитном поле”, ТМФ, 131:2 (2002), 304–331  mathnet  crossref  mathscinet  zmath; J. Brüning, S. Yu. Dobrokhotov, K. V. Pankrashin, “The Asymptotic Form of the Lower Landau Bands in a Strong Magnetic Field”, Theoret. and Math. Phys., 131:2 (2002), 704–728  crossref  isi
  4. Kaganov M., Peschansky V., “Galvano-Magnetic Phenomena Today and Forty Years Ago”, Phys. Rep.-Rev. Sec. Phys. Lett., 372:6 (2002), 445–487  crossref  isi
  5. Bruning J., Dobrokhotov S., Pankrashkin K., “The Spectral Asymptotics of the Two-Dimensional Schrodinger Operator with a Strong Magnetic Field. II”, Russ. J. Math. Phys., 9:4 (2002), 400–416  crossref  mathscinet  zmath  isi
  6. Peschanskii V., “Galvanomagnetic Phenomena in Organic Layered Conductors”, J. Exp. Theor. Phys., 94:5 (2002), 1035–1042  crossref  adsnasa  isi  scopus
  7. Bruning J., Dobrokhotov S., Pankrashkin K., “The Spectral Asymptotics of the Two-Dimensional Schrodinger Operator with a Strong Magnetic Field. I”, Russ. J. Math. Phys., 9:1 (2002), 14–49  mathscinet  zmath  isi
  8. Peschansky V., Atalla R., “On the Magnetoresistance of the Organic Complexes (Bedt-Ttf)(2)Mhg(Scn)(4)”, Low Temp. Phys., 27:12 (2001), 1018–1020  crossref  adsnasa  isi  scopus
  9. Bruning J., Dobrokhotov S., “A Global Semiclassical Description of the Spectrum of the Two-Dimensional Magnetic Schrodinger Operator with a Periodic Potential”, Dokl. Math., 64:1 (2001), 131–136  zmath  isi
  10. Р. Де Лео, “Существование и мера эргодических слоений в задаче Новикова о полуклассическом движении электрона”, УМН, 55:1(331) (2000), 181–182  mathnet  crossref  mathscinet  zmath  adsnasa; R. De Leo, “The existence and measure of ergodic foliations in Novikov's problem of the semiclassical motion of an electron”, Russian Math. Surveys, 55:1 (2000), 166–168  crossref  isi  elib
Предыдущая
1
2
3
4
5
6
Следующая