33 citations to https://www.mathnet.ru/rus/znsl1489
  1. Н. А. Вавилов, “Еще немного исключительной нумерологии”, Вопросы теории представлений алгебр и групп. 19, Зап. научн. сем. ПОМИ, 375, ПОМИ, СПб., 2010, 22–31  mathnet; N. A. Vavilov, “Some more exceptional numerology”, J. Math. Sci. (N. Y.), 171:3 (2010), 317–321  crossref
  2. Distler J., Garibaldi S., “There is No “Theory of Everything” Inside E-8”, Comm Math Phys, 298:2 (2010), 419–436  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
  3. Н. А. Вавилов, “Строение изотропных редуктивных групп”, Тр. Ин-та матем., 18:1 (2010), 15–27  mathnet
  4. N. Vavilov, A. Luzgarev, A. Stepanov, “Calculations in exceptional groups over rings”, Теория представлений, динамические системы, комбинаторные методы. XVII, Зап. научн. сем. ПОМИ, 373, ПОМИ, СПб., 2009, 48–72  mathnet; J. Math. Sci. (N. Y.), 168:3 (2010), 334–348  crossref
  5. Н. Вавилов, “Весовые элементы групп Шевалле”, Алгебра и анализ, 20:1 (2008), 34–85  mathnet  mathscinet  zmath  elib; N. Vavilov, “Weight elements of Chevalley groups”, St. Petersburg Math. J., 20:1 (2009), 23–57  crossref  isi
  6. Н. А. Вавилов, С. И. Николенко, “$\mathrm A_2$-доказательство структурных теорем для группы Шевалле типа $\mathrm F_4$”, Алгебра и анализ, 20:4 (2008), 27–63  mathnet  mathscinet  zmath  elib; N. A. Vavilov, S. I. Nikolenko, “$\mathrm A_2$-proof of structure theorems for Chevalley groups of type $\mathrm F_4$”, St. Petersburg Math. J., 20:4 (2009), 527–551  crossref  isi
  7. Н. А. Вавилов, “Нумерология квадратных уравнений”, Алгебра и анализ, 20:5 (2008), 9–40  mathnet  mathscinet  zmath; N. A. Vavilov, “Numerology of square equations”, St. Petersburg Math. J., 20:5 (2009), 687–707  crossref  isi
  8. Н. А. Вавилов, “Как увидеть знаки структурных констант?”, Алгебра и анализ, 19:4 (2007), 34–68  mathnet  mathscinet  zmath; N. A. Vavilov, “Can one see the signs of structure constants?”, St. Petersburg Math. J., 19:4 (2008), 519–543  crossref  isi
  9. Vavilov N., “An A(3)-proof of structure theorems for Chevalley groups of types E-6 and E-7”, International Journal of Algebra and Computation, 17:5–6 (2007), 1283–1298  crossref  mathscinet  zmath  isi
  10. Н. А. Вавилов, А. Ю. Лузгарев, И. М. Певзнер, “Группа Шевалле типа $\mathrm E_6$ в 27-мерном представлении”, Вопросы теории представлений алгебр и групп. 14, Зап. научн. сем. ПОМИ, 338, ПОМИ, СПб., 2006, 5–68  mathnet  mathscinet  zmath  elib; N. A. Vavilov, A. Yu. Luzgarev, I. M. Pevzner, “Chevalley group of type $\mathrm E_6$ in the 27-dimensional representation”, J. Math. Sci. (N. Y.), 145:1 (2007), 4697–4736  crossref  elib
Предыдущая
1
2
3
4
Следующая