26 citations to https://www.mathnet.ru/rus/zvmmf10368
-
Egor Gladin, Alexander Gasnikov, Pavel Dvurechensky, “Accuracy Certificates for Convex Minimization with Inexact Oracle”, J Optim Theory Appl, 204:1 (2025)
-
Peiyun Xue, Zhenan Dong, Yan Qiang, Wen Zheng, Jing Bai, Xiang Gao, “RankMatch: Environmental sound semi-supervised learning with audio classification propensity”, Applied Acoustics, 231 (2025), 110515
-
D.A. Pasechnyuk, P. Dvurechensky, C.A. Uribe, A.V. Gasnikov, “Decentralised convex optimisation with probability-proportional-to-size quantization”, EURO Journal on Computational Optimization, 13 (2025), 100113
-
Pavel Dvurechensky, Petr Ostroukhov, Alexander Gasnikov, César A. Uribe, Anastasiya Ivanova, “Near-optimal tensor methods for minimizing the gradient norm of convex functions and accelerated primal–dual tensor methods”, Optimization Methods and Software, 2024, 1
-
Meruza Kubentayeva, Demyan Yarmoshik, Mikhail Persiianov, Alexey Kroshnin, Ekaterina Kotliarova, Nazarii Tupitsa, Dmitry Pasechnyuk, Alexander Gasnikov, Vladimir Shvetsov, Leonid Baryshev, Alexey Shurupov, “Primal-dual gradient methods for searching network equilibria in combined models with nested choice structure and capacity constraints”, Comput Manag Sci, 21:1 (2024)
-
Olga Yufereva, Michael Persiianov, Pavel Dvurechensky, Alexander Gasnikov, Dmitry Kovalev, “Decentralized convex optimization on time-varying networks with application to Wasserstein barycenters”, Comput Manag Sci, 21:1 (2024)
-
Yue Xie, Zhongjian Wang, Zhiwen Zhang, “Randomized Methods for Computing Optimal Transport Without Regularization and Their Convergence Analysis”, J Sci Comput, 100:2 (2024)
-
Artem Vasin, Alexander Gasnikov, Pavel Dvurechensky, Vladimir Spokoiny, “Accelerated gradient methods with absolute and relative noise in the gradient”, Optimization Methods and Software, 38:6 (2023), 1180
-
Nazarii Tupitsa, Pavel Dvurechensky, Darina Dvinskikh, Alexander Gasnikov, Encyclopedia of Optimization, 2023, 1
-
А. С. Аникин, В. В. Матюхин, Д. А. Пасечнюк, “Ускоренные проксимальные оболочки: применение к покомпонентному методу”, Ж. вычисл. матем. и матем. физ., 62:2 (2022), 342–352
; A. S. Anikin, V. V. Matyukhin, D. A. Pasechnyuk, “Accelerated proximal envelopes: application to componentwise methods”, Comput. Math. Math. Phys., 62:2 (2022), 336–345