Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив

Поиск
RSS
Новые поступления






Летняя школа «Современная математика» имени Виталия Арнольда, 2023
19 июля 2023 г. 11:15–12:30, Московская область, г. Дубна, дом отдыха «Ратмино»
 


Теория внутренних множеств — аксиоматический подход к нестандартному анализу. Семинар 1

С. О. Сперанский
Дополнительные материалы:
Adobe PDF 132.7 Kb
Adobe PDF 782.7 Kb
Adobe PDF 735.1 Kb
Adobe PDF 180.2 Kb
Adobe PDF 714.9 Kb
Adobe PDF 365.6 Kb

Количество просмотров:
Эта страница:719
Видеофайлы:563
Материалы:233
Youtube:

С. О. Сперанский



Аннотация: Один из ярких примеров применения методов математической логики — строгое обоснование «нестандартного анализа», которое позволило полностью легитимизировать метод актуальных бесконечно малых, восходящий к Лейбницу и Ньютону. Интуитивно поле вещественных чисел при этом расширяется до поля «гипервещественных чисел», которое содержит бесконечно малые и бесконечно большие (по сравнению с обычными числами) элементы. В рамках современного нестандартного анализа можно дать строгие определения предела, производной и интеграла в духе Лейбница и Ньютона (без использования эпсилон-дельта техники), а также придать точный смысл выражениям вроде «функция равномерно непрерывна, если она переводит бесконечно близкие аргументы в бесконечно близкие значения».

Цель данного мини-курса — познакомить слушателей с одним популярным подходом к нестандартному анализу, называемым «теорией внутренних множеств». Как известно, в основе современной математики лежит теория множеств, а точнее — соответствующая ей аксиоматическая система Цермело–Френкеля с аксиомой выбора, обозначаемая через ZFC. В рамках ZFC обычные математические объекты вроде натуральных или вещественных чисел отождествляются с множествами специального рода. Теория внутренних множеств, обозначаемая через IST, — особая аксиоматическая система на основе ZFC, которая позволяет говорить о бесконечно больших гипернатуральных числах, бесконечно больших и малых гипервещественных числах и так далее. Многие рассуждения из области математического анализа и теории меры становятся «радикально элементарными» в IST.

Пререквизиты. Предполагается знакомство с базовыми обозначениями и терминологией из области теории множеств.

План.
1. Аксиоматическая теория множеств. Система Цермело–Френкеля (ZF).
2. Представление обычных математических объектов в теории множеств. Аксиома выбора (C).
3. Аксиомы теории внутренних множеств (IST). Бесконечно большие и бесконечно малые числа.
4. Определения предела и производной в терминах бесконечно малых. Примеры доказательств в «нестандартном анализе».

Дополнительная литература.
1. T. Jech. Set Theory. 3rd edition. Springer, 2002.
2. E. Nelson. Internal set theory: a new approach to non-standard analysis. Bull. Amer. Math. Soc. 3:3, 1165–1198, 1977.
3. E. Nelson. Radically Elementary Probability Theory. Princeton University Press, 1987. Перевод на русский: Э. Нельсон. Радикально элементарная теория вероятностей. Издательство ИМ СО РАН, 1995.

Дополнительные материалы: speranski_l0.pdf (132.7 Kb) , speranski_l3.pdf (782.7 Kb) , speranski_l4.pdf (735.1 Kb) , speranski_ex1.pdf (180.2 Kb) , speranski_l2.pdf (714.9 Kb) , speranski_l1.pdf (365.6 Kb)

Website: https://mccme.ru/dubna/2023/courses/speranski.html
Цикл лекций
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025