Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив

Поиск
RSS
Новые поступления






Летняя школа «Современная математика» имени Виталия Арнольда, 2023
26 июля 2023 г. 09:30–10:45, Московская область, г. Дубна, дом отдыха «Ратмино»
 


Рациональные приближения функций и чисел

А. И. Аптекарев
Презентации:
PowerPoint 1.8 Mb
Дополнительные материалы:
Adobe PDF 5.1 Mb

Количество просмотров:
Эта страница:418
Видеофайлы:166
Материалы:81
Youtube:

А. И. Аптекарев



Аннотация: Лекция будет посвящена конструкции, пришедшей в современную математику из античности. Речь пойдет о непрерывных (цепных) дробях, которые с помощью алгоритма Евклида можно ставить в соответствие функциям или числам. Когда этот алгоритм, примененный к конкретной функции (числу), может работать без остановки, тогда получаемая непрерывная дробь будет бесконечной. Если при этом его остановить на каком-то шаге, то соответствующая конечная дробь будет приближением этой функции (числа). Так Архимед получил рациональное приближение $\frac{1351}{780}$ для числа $\sqrt{3}$.

Нашей целью будет поговорить о проблеме маркерных паттернов нуклеотидов ДНК с точки зрения геометрии инвариантных множеств (аттракторов, репеллеров) итераций нескольких фиксированных дробно-линейных отображений. Мы постараемся объяснить необходимые для этого понятия доступным для слушателей образом.

Начнем с продолжения в комплексной плоскости ростков аналитических функций (голоморфных, мероморфных, алгебраических). Здесь появятся рациональные аппроксимации степенных рядов (аппроксимации Паде) и, в частности, конечные и бесконечные непрерывные дроби с полиномиальными коэффициентами. (В последующем разговоре именно в таких коэффициентах будет содержаться информация о нуклеотиде ДНК).

Затем перейдем к классике теории чисел: скорости приближения иррациональных чисел рациональными. Нас будут интересовать медленно приближаемые иррациональности (золотое сечение, спектр Лагранжа, цепочки (граф) Маркова). Известно, что для этих чисел непрерывные дроби периодические, и их коэффициенты принадлежат множеству из двух элементов: $\{1, 2\}$. Собственно паттерны из коэффициентов этих периодов будут представлять для нас главный интерес.

Мы упорядочим эти паттерны по скорости приближения задаваемой ими иррациональности. Для этого мы рассмотрим нашу непрерывную дробь в виде итерационной функциональной системы (ИФС) $\{f_j(z)\}_{j=1,2}$, переводящей комплексную плоскость в себя под действием двух дробнолинейных преобразований $f_1(z):=\frac{1}{1+z},~ f_2(z):=\frac{1}{2+z}$, выбираемых в соответствии с патерном периода. Геометрическую характеристику взаимного расположения инвариантных множеств (аттрактора и репеллера) дискретной динамической системы, порожденной этой ИФС, можно связать со скоростью приближения иррациональности нашей непрерывной дробью.

Наконец, мы перейдем к молекуле ДНК, её модели “nearest neighbor approximation”, к дискретному уравнению Шредингера, соответствующей ему непрерывной дроби с полиномиальными коэффициентами и увидим, как это все похоже на спектр Маркова—Лагранжа!

Презентации: aptekarev_presentation.ppt (1.8 Mb)
Дополнительные материалы: aptekarev_l1.pdf (5.1 Mb)

Website: https://mccme.ru/dubna/2023/courses/aptekarev.html
Цикл лекций
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025