|
|
Алгебра и анализ, 2024, том 36, выпуск 3, страницы 152–164
(Mi aa1921)
|
|
|
|
Статьи
Nonlinear monotone $H^1$ stability of plane Poiseuille and Couette flows of a Navier–Stokes–Voigt fluid of order zero
G. Mulone Università degli Studi di Catania, Dipartimento di Matematica e Informatica, Viale Andrea Doria 6, 95125 Catania, Italy
Аннотация:
The nonlinear monotone $H^1$-energy stability of laminar flows in a layer between two parallel planes filled with a Navier–Stokes–Voigt fluid is studied. It is proved that the critical Reynolds numbers for monotone $H^1$-energy stability for the Couette and Poiseuille flows of the zero-order Navier–Stokes–Voigt fluid are the same as those found by Orr for Newtonian fluids. However, the exponential decay coefficient depends on the Kelvin–Voigt parameter $\Lambda$. Furthermore, a Squire theorem holds in the nonlinear case: the least stabilizing perturbations in $H^1$-energy are the two-dimensional spanwise perturbations.
Ключевые слова:
Navier–Stokes–Voigt fluid, plane shear flows, nonlinear stability, critical Reynolds number, Couette flow, Poiseuille flow.
Поступила в редакцию: 09.01.2024
Образец цитирования:
G. Mulone, “Nonlinear monotone $H^1$ stability of plane Poiseuille and Couette flows of a Navier–Stokes–Voigt fluid of order zero”, Алгебра и анализ, 36:3 (2024), 152–164
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1921 https://www.mathnet.ru/rus/aa/v36/i3/p152
|
|