|
|
Algebra and Discrete Mathematics, 2008, выпуск 4, страницы 15–22
(Mi adm175)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
RESEARCH ARTICLE
On tame semigroups generated by idempotents with partial null multiplication
Vitaliy M. Bondarenkoa, Olena M. Tertychnab a Institute of Mathematics, NAS, Kyiv, Ukraine
b Kyiv National Taras Shevchenko University, Kiev, Ukraine
Аннотация:
Let $I$ be a finite set without $0$ and $J$ a subset in $I\times I$ without diagonal elements $(i,i)$. We define $S(I,J)$ to be the semigroup with generators $e_i$, where $i\in I\cup 0$, and the following relations: $e_0=0$; $e_i^2=e_i$ for any $i\in I$; $e_ie_j=0$ for any $(i,j)\in J$. In this paper we study finite-dimensional representations of such semigroups over a field $k$. In particular, we describe all finite semigroups $S(I,J)$ of tame representation type.
Ключевые слова:
semigroup, representation, tame type, the Tits form.
Поступила в редакцию: 13.05.2008 Исправленный вариант: 14.10.2008
Образец цитирования:
Vitaliy M. Bondarenko, Olena M. Tertychna, “On tame semigroups generated by idempotents with partial null multiplication”, Algebra Discrete Math., 2008, no. 4, 15–22
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm175 https://www.mathnet.ru/rus/adm/y2008/i4/p15
|
|