|
|
Algebra and Discrete Mathematics, 2007, выпуск 3, страницы 67–86
(Mi adm222)
|
|
|
|
RESEARCH ARTICLE
$F$–semigroups
Emilia Giraldesa, Paula Marques-Smithb, Heinz Mitschc a UTAD, Dpto. de Matematica, Quinta de Prados, 5000 Vila Real, Portugal
b Universidade do Minho, Centro de Matematica, Campus de Gualtar,4700 Braga, Portugal
c Universität Wien,Fakultät für Mathematik, Nordbergstrasse 15,1090 Wien, Austria
Аннотация:
A semigroup $S$ is called $F$- semigroup if there exists a group-congruence $\rho$ on $S$ such that every $\rho$-class contains a greatest element with respect to the natural partial order $\leq_S$ of $S$ (see [8]). This generalizes the concept of $F$-inverse semigroups introduced by V. Wagner [12] and investigated in [7]. Five different characterizations of general $F$-semigroups $S$ are given: by means of residuals, by special principal anticones, by properties of the set of idempotents, by the maximal elements in $(S,\leq_S)$ and finally, an axiomatic one using an additional unary operation. Also $F$-semigroups in special classes are considered; in particular, inflations of semigroups and strong semilattices of monoids are studied.
Ключевые слова:
natural partial order, maximal elements, group congruence, residual, anticone.
Поступила в редакцию: 20.10.2004 Исправленный вариант: 28.01.2008
Образец цитирования:
Emilia Giraldes, Paula Marques-Smith, Heinz Mitsch, “$F$–semigroups”, Algebra Discrete Math., 2007, no. 3, 67–86
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm222 https://www.mathnet.ru/rus/adm/y2007/i3/p67
|
|