|
|
Algebra and Discrete Mathematics, 2004, выпуск 2, страницы 84–91
(Mi adm340)
|
|
|
|
RESEARCH ARTICLE
Generalized equivalence of collections of matrices and common divisors of matrices
Vasyl' M. Petrychkovych Department of Algebra, Pidstryhach Institute
for Applied Problems of Mechanics and
the Mathematics National Academy of Sciences
of Ukraine, 3B Naukova Str., Lviv, 9053, Ukraine
Аннотация:
The collections $(A_{1},\dots, A_{k})$ and $(B_{1},\dots, B_{k})$ of matrices over an adequate ring are called generalized equivalent if $A_i=UB_iV_i$ for some invertible matrices $U$ and $V_{i}, \; i=1,\dots, k$. Some conditions are established under which the finite collection consisting of the matrix and its the divisors is generalized equivalent to the collection of the matrices of the triangular and diagonal forms. By using these forms the common divisors of matrices is described.
Ключевые слова:
collection of matrices, generalized equivalence, canonical diagonal form, common divisors.
Поступила в редакцию: 21.04.2004 Исправленный вариант: 25.05.2004
Образец цитирования:
Vasyl' M. Petrychkovych, “Generalized equivalence of collections of matrices and common divisors of matrices”, Algebra Discrete Math., 2004, no. 2, 84–91
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm340 https://www.mathnet.ru/rus/adm/y2004/i2/p84
|
|