|
|
Algebra and Discrete Mathematics, 2003, выпуск 2, страницы 36–46
(Mi adm377)
|
|
|
|
RESEARCH ARTICLE
Flows in graphs and the homology of free categories
Ahmet A. Husainova, Hamza Çalişicib a Department of Computer Technologies, Komsomolsk-on-Amur State Technical University, prosp. Lenina, 27, Komsomolsk-on-Amur, 681013, Russia
b Amasya Egitim Fakultesi, Matematik Bolumu, Ondokuz Mayis University, Amasya, 05189, Turkey
Аннотация:
We study the $R$-module of generalized flows in a graph with coefficients in the $R$-representation of the graph over a ring $R$ with 1 and show that this $R$-module is isomorphic to the first derived functor of the colimit. We generalize Kirchhoff's laws and build an exact sequence for calculating the $R$-module of flows in the union of graphs.
Ключевые слова:
homology of categories, derived of colimit, flows in graphs, Kirchhoff laws.
Поступила в редакцию: 13.05.2003 Исправленный вариант: 25.06.2003
Образец цитирования:
Ahmet A. Husainov, Hamza Çalişici, “Flows in graphs and the homology of free categories”, Algebra Discrete Math., 2003, no. 2, 36–46
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm377 https://www.mathnet.ru/rus/adm/y2003/i2/p36
|
|