|
|
Algebra and Discrete Mathematics, 2014, том 18, выпуск 1, страницы 86–96
(Mi adm483)
|
|
|
|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
RESEARCH ARTICLE
Preradicals, closure operators in $R$-Mod and connection between them
A. I. Kashu Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, 5 Academiei str., Chişinău, MD – 2028 MOLDOVA
Аннотация:
For a module category $R$-Mod the class $\mathbb{PR}$ of preradicals and the class $\mathbb{CO}$ of closure operators are studied. The relations between these classes are realized by three mappings: $\Phi : \mathbb{CO} \to \mathbb{PR}$ and $\Psi_1, \Psi_2 : \mathbb{PR} \to \mathbb{CO}$. The impact of these mappings on the operations in $\mathbb{PR}$ and $\mathbb{CO}$ (meet, join, product, coproduct) is investigated. It is established that in most cases the considered mappings preserve the lattice operations (meet and join), while the other two operations are converted one into another (i.e. the product into the coproduct and vice versa).
Ключевые слова:
ring, module, lattice, preradical, closure operator, product (coproduct) of closure operators.
Поступила в редакцию: 09.07.2014 Исправленный вариант: 09.07.2014
Образец цитирования:
A. I. Kashu, “Preradicals, closure operators in $R$-Mod and connection between them”, Algebra Discrete Math., 18:1 (2014), 86–96
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm483 https://www.mathnet.ru/rus/adm/v18/i1/p86
|
|