|
|
Algebra and Discrete Mathematics, 2016, том 21, выпуск 2, страницы 264–281
(Mi adm567)
|
|
|
|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
RESEARCH ARTICLE
The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs
Bartłomiej Pawlik Institute of Mathematics, Silesian University of Technology, ul. Kaszubska 23, 44-100 Gliwice, Poland
Аннотация:
Base (minimal generating set) of the Sylow 2-subgroup of $S_{2^n}$ is called diagonal if every element of this set acts non-trivially only on one coordinate, and different elements act on different coordinates. The Sylow 2-subgroup $P_n(2)$ of $S_{2^n}$ acts by conjugation on the set of all bases. In presented paper the stabilizer of the set of all diagonal bases in $S_n(2)$ is characterized and the orbits of the action are determined. It is shown that every orbit contains exactly $2^{n-1}$ diagonal bases and $2^{2^n-2n}$ bases at all. Recursive construction of Cayley graphs of $P_n(2)$ on diagonal bases ($n\geq2$) is proposed.
Ключевые слова:
Sylow $p$-subgroup, group base, wreath product of groups, Cayley graphs.
Поступила в редакцию: 10.04.2016 Исправленный вариант: 30.05.2016
Образец цитирования:
Bartłomiej Pawlik, “The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs”, Algebra Discrete Math., 21:2 (2016), 264–281
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm567 https://www.mathnet.ru/rus/adm/v21/i2/p264
|
|