|
|
Algebra and Discrete Mathematics, 2018, том 26, выпуск 2, страницы 290–304
(Mi adm685)
|
|
|
|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
RESEARCH ARTICLE
Abelian doppelsemigroups
Anatolii V. Zhuchoka, Kolja Knauerb a Department of Algebra and System Analysis, Luhansk Taras Shevchenko National University, Gogol square, 1, Starobilsk, 92703, Ukraine
b Laboratory of Computer Science and Systems, Aix-Marseille University,
LIS UMR 7020, Case Courrier 901, 163, avenue de Luminy 13288, Marseille Cedex 9, France
Аннотация:
A doppelsemigroup is an algebraic system consisting of a set with two binary associative operations satisfying certain identities. Doppelsemigroups are a generalization of semigroups and they have relationships with such algebraic structures as doppelalgebras, duplexes, interassociative semigroups, restrictive bisemigroups, dimonoids and trioids. This paper is devoted to the study of abelian doppelsemigroups. We show that every abelian doppelsemigroup can be constructed from a left and right commutative semigroup and describe the free abelian doppelsemigroup. We also characterize the least abelian congruence on the free doppelsemigroup, give examples of abelian doppelsemigroups and find conditions under which the operations of an abelian doppelsemigroup coincide.
Ключевые слова:
doppelsemigroup, abelian doppelsemigroup, free abelian doppelsemigroup, free doppelsemigroup, interassociativity, semigroup, congruence, doppelalgebra.
Поступила в редакцию: 07.09.2018
Образец цитирования:
Anatolii V. Zhuchok, Kolja Knauer, “Abelian doppelsemigroups”, Algebra Discrete Math., 26:2 (2018), 290–304
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm685 https://www.mathnet.ru/rus/adm/v26/i2/p290
|
| Статистика просмотров: |
| Страница аннотации: | 369 | | PDF полного текста: | 114 | | Список литературы: | 82 |
|