|
|
Algebra and Discrete Mathematics, 2019, том 27, выпуск 1, страницы 75–84
(Mi adm694)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
RESEARCH ARTICLE
Classification of homogeneous Fourier matrices
Gurmail Singh Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan, Canada, S4S 0A2
Аннотация:
Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group $\mathrm{SL}_2(\mathbb{Z})$. In this paper, we show that there is a one-to-one correspondence between Fourier matrices associated to modular data and self-dual $C$-algebras that satisfy a certain condition. We prove that a homogenous $C$-algebra arising from a Fourier matrix has all the degrees equal to $1$.
Ключевые слова:
modular data, Fourier matrices, fusion rings, $C$-algebras.
Поступила в редакцию: 14.04.2017 Исправленный вариант: 19.02.2018
Образец цитирования:
Gurmail Singh, “Classification of homogeneous Fourier matrices”, Algebra Discrete Math., 27:1 (2019), 75–84
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm694 https://www.mathnet.ru/rus/adm/v27/i1/p75
|
|