|
|
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2003, номер 1, страницы 18–30
(Mi basm184)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Research articles
A Lie algebra of a differential generalized FitzHugh–Nagumo system
Mihail Popaa, Adelina Georgescub, Carmen Rocşoreanuc a Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, Chişinău, Moldova
b University of Piteşti, Department of Mathematics,
Piteşti, România
c University of Craiova, Department of Mathematics, Craiova, România
Аннотация:
Some Lie algebra admissible for a generalized FitzHugh-Nagumo (F-N) system is constructed. Then this algebra is used to classify the dimension of the $Aff_3(2,R)$-orbits and to derive the four canonical systems corresponding to orbits of dimension equal to 1 or 2. The phase dynamics generated by these systems is studied and is found to differ qualitatively from the dynamics generated by the classical F-N system the $Aff_3(2,R)$-orbits of which are of dimension 3. A dynamic bifurcation diagram is also presented.
Ключевые слова и фразы:
Lie algebra, group, orbit, equilibria, phase dynamics, bifurcation.
Поступила в редакцию: 17.10.2002
Образец цитирования:
Mihail Popa, Adelina Georgescu, Carmen Rocşoreanu, “A Lie algebra of a differential generalized FitzHugh–Nagumo system”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2003, no. 1, 18–30
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/basm184 https://www.mathnet.ru/rus/basm/y2003/i1/p18
|
|