|
An existence result for a $(p(x), q(x))$-Kirchhoff type system with Dirichlet boundary conditions via topological degree method
S. Yacini, C. Allalou, K. Hilal Laboratory of Applied Mathematics and Scientific computing (LMACS),
Faculty of Science and Technology, Beni Mellal, Sultan Moulay Slimane University,
23 000, Beni Mellal, Morocco
Аннотация:
This paper focuses on the existence of at least one weak solution for a nonlocal elliptic system of $(p(x), q(x))$-Kirchhoff type with Dirichlet boundary conditions. The results are obtained by applying the topological degree method of Berkovits applied to an abstract Hammerstein equation associated to our system and also by the theory of the generalized Sobolev spaces.
Ключевые слова и фразы:
weak solutions, $(p(x), q(x))$-Kirchhoff type systeme, variable-exponent Sobolev spaces, topological degree methods.
Поступила в редакцию: 12.01.2024
Образец цитирования:
S. Yacini, C. Allalou, K. Hilal, “An existence result for a $(p(x), q(x))$-Kirchhoff type system with Dirichlet boundary conditions via topological degree method”, Eurasian Math. J., 15:2 (2024), 75–91
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj503 https://www.mathnet.ru/rus/emj/v15/i2/p75
|
|