Eurasian Mathematical Journal
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Eurasian Math. J.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Eurasian Mathematical Journal, 2025, том 16, номер 2, страницы 8–22
DOI: https://doi.org/10.32523/2077-9879-2025-16-2-08-22
(Mi emj528)
 

Boundary value problem for hyperbolic integro-differential equations of mixed type

A. T. Assanovaa, Z. S. Kobeyevab, R. A. Medetbekovab

a Department of Differential Equations and Dynamical Systems, Institute of Mathematics and Mathematical Modeling, 28 Shevchenko St, 050010 Almaty, Republic of Kazakhstan
b Department of Mathematics and Informatics, Shymkent University, 131 Jibek Joly St, 160023, Shymkent, Republic of Kazakhstan
Список литературы:
Аннотация: The boundary value problem for a system of hyperbolic integro-differential equations of mixed type with degenerate kernels is considered on a rectangular domain. This problem is reduced to a family of boundary value problems for a system of integro-differential equations of mixed type and integral relations. The system of integro-differential equations of mixed type is transferred to a system of Fredholm integro-differential equations. For solving the family of boundary value problems for integro-differential equations Dzhumabaev’s parametrization method is applied. A new concept of a general solution to a system of integro-differential equations with parameter is developed. The domain is divided into N subdomains by a temporary variable, the values of a solution at the in terior lines of the subdomains are considered as additional functional parameters, and a system of integro-differential equations is reduced to a family of special Cauchy problems on the subdomains for Fredholm integro-differential equation with functional parameters. Using the solutions to these problems, a new general solutions to a system of Fredholm integro-differential equations with parameter is introduced and its properties are established. Based on a general solution, boundary conditions, and the continuity conditions of a solution at the interior lines of the partition, a system of linear functional equations with respect to parameters is composed. Its coefficients and right-hand sides are found by solving the family of special Cauchy problems for Fredholm integro-differential equations on the subdomains. It is shown that the solvability of the family of boundary value problems for Fredholm integro-differential equations is equivalent to the solvability of the composed system. Methods for solving boundary value problems are proposed, which are based on the construction and solving of these systems. Conditions for the existence and uniqueness of a solution to the boundary value problem for a system of hyperbolic integro-differential equations of mixed type with degenerate kernels are obtained.
Ключевые слова и фразы: hyperbolic integro-differential equations, nonlocal conditions, solvability criteria, parametrization method.
Финансовая поддержка Номер гранта
Комитет науки Министерства науки и высшего образования Республики Казахстан AP23485509
This research is funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP23485509).
Поступила в редакцию: 13.11.2023
Тип публикации: Статья
MSC: 45K05, 34K10, 35R09
Язык публикации: английский
Образец цитирования: A. T. Assanova, Z. S. Kobeyeva, R. A. Medetbekova, “Boundary value problem for hyperbolic integro-differential equations of mixed type”, Eurasian Math. J., 16:2 (2025), 8–22
Цитирование в формате AMSBIB
\RBibitem{AssKobMed25}
\by A.~T.~Assanova, Z.~S.~Kobeyeva, R.~A.~Medetbekova
\paper Boundary value problem for hyperbolic integro-differential equations of mixed type
\jour Eurasian Math. J.
\yr 2025
\vol 16
\issue 2
\pages 8--22
\mathnet{http://mi.mathnet.ru/emj528}
\crossref{https://doi.org/10.32523/2077-9879-2025-16-2-08-22}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/emj528
  • https://www.mathnet.ru/rus/emj/v16/i2/p8
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025