Eurasian Mathematical Journal
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Eurasian Math. J.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Eurasian Mathematical Journal, 2025, том 16, номер 2, страницы 23–29
DOI: https://doi.org/10.32523/2077-9879-2025-16-2-23-29
(Mi emj529)
 

Notes on the generalized Gauss reduction algorithm

Y. Baisalov, R. Nauryzbayev

Department of Mechanics and Mathematics, L.N. Gumilyov Eurasian National University, 13 Kazhymukan St, Office 115, 010008 Astana, Republic of Kazakhstan
Список литературы:
Аннотация: The hypothetical possibility of building a quantum computer in the near future has forced a revision of the foundations of modern cryptography. The fact is that many difficult algorithmic problems, such as the discrete logarithm, factoring a (large) natural number into prime factors, etc., on the complexity of which many cryptographic protocols are based these days, have turned out to be relatively easy to solve using quantum algorithms.
Intensive research is currently underway to find problems that are difficult even for a quantum computer and have potential applications for cryptographic protocols. Our article contains notes related to the so-called generalized Gauss algorithm, which calculates the reduced basis of a two dimensional lattice [8], [2]. Note that researchers are increasingly putting forward difficult algorithmic problems from lattice theory as candidates for the foundation of post-quantum cryptography. The majority of algorithmic problems related to lattice reduction become NP-hard as the lattice dimension increases [3], [1]. Fundamental problems such as the Shortest Vector Problem (SVP), the Closest Vector Problem (CVP), and Bounded Distance Decoding (BDD) are conjectured to remain hard even for quantum algorithms [4], [6]. Although the generalized Gauss reduction algorithm applies to two-dimensional lattices, where exact analysis is feasible (dimensions 3 and 4 are studied in [7], [5]), understanding such low-dimensional reductions provides important insights into the structure and complexity of lattice-based cryptographic constructions.
Ключевые слова и фразы: lattice, well-ordered basis, reduced basis, generalized Gaussian algorithm.
Финансовая поддержка Номер гранта
Комитет науки Министерства науки и высшего образования Республики Казахстан AP19677451
The research of the first author is funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant No. AP19677451).
Поступила в редакцию: 19.07.2024
Тип публикации: Статья
MSC: 68W40
Язык публикации: английский
Образец цитирования: Y. Baisalov, R. Nauryzbayev, “Notes on the generalized Gauss reduction algorithm”, Eurasian Math. J., 16:2 (2025), 23–29
Цитирование в формате AMSBIB
\RBibitem{BaiNau25}
\by Y.~Baisalov, R.~Nauryzbayev
\paper Notes on the generalized Gauss reduction algorithm
\jour Eurasian Math. J.
\yr 2025
\vol 16
\issue 2
\pages 23--29
\mathnet{http://mi.mathnet.ru/emj529}
\crossref{https://doi.org/10.32523/2077-9879-2025-16-2-23-29}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/emj529
  • https://www.mathnet.ru/rus/emj/v16/i2/p23
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025