Аннотация:
Let $R$ be an unramified regular local ring of mixed characteristic, $D$ an Azumaya $R$-algebra, $K$ the fraction field of $R$, $\operatorname{Nrd}\colon D^{\times} \to R^{\times}$ the reduced norm homomorphism. Let $a \in R^{\times}$ be a unit. Suppose the equation $\operatorname{Nrd}=a$ has a solution over $K$, then it has a solution over $R$.
Particularly, we prove the following. Let $R$ be as above and $a$, $b$, $c$ be units in $R$. Consider the equation $T^2_1-aT^2_2-bT^2_3+abT^2_4=c$. If it has a solution over $K$, then it has a solution over $R$.
Similar results are proved for regular local rings, which are geometrically regular over a discrete valuation ring. These results extend result proven in [23] to the mixed characteristic case.
Bibliography: 29 titles.
Образец цитирования:
I. A. Panin, “On Grothendieck–Serre conjecture in mixed characteristic for $\operatorname{SL}_{1,D}$”, Изв. РАН. Сер. матем., 89:2 (2025), 105–113; Izv. Math., 89:2 (2025), 319–327