|
|
Математическая физика, анализ, геометрия, 2003, том 10, номер 2, страницы 262–268
(Mi jmag249)
|
|
|
|
Краткие сообщения
On a relation between the coefficients and the sum of the generalized Taylor series
T. V. Rvachova Department of Higher Mathematics, N.\,Ye.~Zhukovsky National Aeronautical University "KhAI", 17 Chkalova Str., Kharkiv, 61070, Ukraine
Аннотация:
Let $f\in C^\infty [-1,1]$ and $\exists\,\rho\in [1,2)$ such that $\forall\,k=0,1,2,\dots$ $\|f^{(k)}\|_{C[-1,1]}\leq c(f)\rho^k2^{\frac{k(k+1)}2}$. Then it expands in the generalized Taylor series, which was introduced by V. A. Rvachov in 1982. In this paper it is shown that if the restrictions $\|f^{(n)}\|=o(2^{\frac{n(n+1)}2})$, $n\to\infty$ are imposed on the sum of this series, and stronger restrictions $|f^{(n)}(x_{n,k})|\leq CA(n)$, $\frac{A(n+1)}{A(n)}\leq 2^{n+\frac 12} $ hold for its coefficients, then these stronger restrictions will hold for the sum of the series too. As a consequence the conditions of belonging to Gevrey class and of real analyticity for the above-mentioned functions are obtained.
Поступила в редакцию: 08.08.2001
Образец цитирования:
T. V. Rvachova, “On a relation between the coefficients and the sum of the generalized Taylor series”, Матем. физ., анал., геом., 10:2 (2003), 262–268
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag249 https://www.mathnet.ru/rus/jmag/v10/i2/p262
|
|