|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
On isometric immersions of the Lobachevsky plane into 4-dimensional Euclidean space with flat normal connection
Yuriy Aminov B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine
Аннотация:
According to Hilbert's theorem, the Lobachevsky plane $L^2$ does not admit a regular isometric immersion into $E^3$. The question on the existence of isometric immersion of $L^2$ into $E^4$ remains open. We consider isometric immersions into $E^4$ with flat normal connection and find a fundamental system of two partial differential equations of the second order for two functions. We prove the theorems on the non-existence of global and local isometric immersions for the case under consideration.
Ключевые слова и фразы:
isometric immersion, indicatrix, curvature, asymptotic line.
Поступила в редакцию: 30.04.2020
Образец цитирования:
Yuriy Aminov, “On isometric immersions of the Lobachevsky plane into 4-dimensional Euclidean space with flat normal connection”, Журн. матем. физ., анал., геом., 16:3 (2020), 208–220
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag754 https://www.mathnet.ru/rus/jmag/v16/i3/p208
|
|