|
Журнал математической физики, анализа, геометрии, 2020, том 16, номер 3, страницы 364–371 DOI: https://doi.org/10.15407/mag16.032.364
(Mi jmag761)
|
|
|
|
On projective classification of points of a submanifold in the Euclidean space
Alexander Yampolsky V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
DOI:
https://doi.org/10.15407/mag16.032.364
Аннотация:
We propose the classification of points of a submanifold in the Euclidean space in terms of the indicatrix of normal curvature up to projective transformation and give a necessary condition for finiteness of number of such classes. We apply the condition to the case of three-dimensional submanifold in six-dimensional Euclidean space and prove that there are 10 types of projectively equivalent points.
Ключевые слова и фразы:
normal curvature indicatrix, submanifold point type, projective transformation.
Поступила в редакцию: 01.06.2020
Образец цитирования:
Alexander Yampolsky, “On projective classification of points of a submanifold in the Euclidean space”, Журн. матем. физ., анал., геом., 16:3 (2020), 364–371
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag761 https://www.mathnet.ru/rus/jmag/v16/i3/p364
|
|