|
|
Lobachevskii Journal of Mathematics, 2006, том 22, страницы 19–26
(Mi ljm41)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
On harmonic univalent functions defined by a generalized Ruscheweyh derivatives operator
M. Darus, Kh. al-Shaqsi Universiti Kebangsaan Malaysia
Аннотация:
Let $\mathcal{S_H}$ denote the class of functions $f=h+\overline g$ which are harmonic univalent and sense preserving in the unit disk $\mathbf U$. Al-Shaqsi and Darus [7] introduced a generalized Ruscheweyh derivatives operator denoted by $D^n_\lambda$ where $D^n_\lambda f(z)=z+\sum\limits_{k=2}^\infty[1+\lambda(k-1)]C(n,k)a_kz^k$, where $C(n,k)={{k + n-1}\choose n}$. The authors, using this operators, introduce the class $\mathcal H^n_\lambda$ of functions which are harmonic in $\mathbf U$. Coefficient bounds, distortion bounds and extreme points are obtained.
Ключевые слова:
univalent functions, Harmonic functions, derivative operator.
Образец цитирования:
M. Darus, Kh. al-Shaqsi, “On harmonic univalent functions defined by a generalized Ruscheweyh derivatives operator”, Lobachevskii J. Math., 22 (2006), 19–26
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ljm41 https://www.mathnet.ru/rus/ljm/v22/p19
|
|