Аннотация:
Prediction of band gaps in layered hybrid halide compounds promising for photovoltaic and optoelectronic applications was performed using a machine learning approach. In order to facilitate the discovery and design of new hybrid halide materials with tailored electronic properties, machine learning models were enhanced with invariant topological representations of these materials using the atom-specific persistent homology method.
Interdisciplinary Scientific and Educational Schools of Lomonosov Moscow State University
23-Sh03-04
Поступила в редакцию: 16.10.2024 Принята в печать: 24.02.2025
Дата публикации: 21.05.2025
Реферативные базы данных:
Тип публикации:
Статья
Язык публикации: английский
Образец цитирования:
E. I. Marchenko, M. G. Khrenova, V. V. Korolev, E. A. Goodilin, A. B. Tarasov, “Topological representation of layered hybrid lead halides for machine learning using universal clusters”, Mendeleev Commun., 35:4 (2025), 383–385