|
|
Математические заметки, 2020, том 108, выпуск 2, статья опубликована в англоязычной версии журнала
(Mi mzm12591)
|
|
|
|
Статьи, опубликованные в английской версии журнала
Asymptotic Expansions at Nonsymmetric Cuspidal Points
I. Ly, N. Tarkhanov Institute of Mathematics, Potsdam, 14476 Germany
Аннотация:
We study the asymptotics of solutions to the Dirichlet problem in a domain
$\mathcal{X}
\subset \mathbb{R}^3$
whose
boundary contains a singular point
$O$.
In a small neighborhood of this point, the domain has the form
$\{ z > \sqrt{x^2 + y^4}
\}$,
i.e., the origin is a nonsymmetric conical point at the boundary.
So far, the behavior of solutions to elliptic boundary-value problems has not been studied sufficiently
in the case of nonsymmetric singular points.
This problem was posed by V.A. Kondrat'ev in 2000.
We establish a complete asymptotic expansion of solutions near the singular point.
Ключевые слова:
Dirichlet problem, singular points, asymptotic expansions.
Поступило: 20.10.2019
Образец цитирования:
I. Ly, N. Tarkhanov, “Asymptotic Expansions at Nonsymmetric Cuspidal Points”, Math. Notes, 108:2 (2020), 219–228
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mzm12591
|
|