|
|
Математические заметки, 2023, том 114, выпуск 6, статья опубликована в англоязычной версии журнала
(Mi mzm14290)
|
|
|
|
Pointwise Semicommutative Rings
Sanjiv Subbaa, Tikaram Subedia, A. M. Buhphangb a Department of Mathematics, National Institute of Technology Meghalaya, Shillong, 793003, India
b Department of Mathematics, North-Eastern Hill University, Shillong, 793022, India
Аннотация:
We call a ring $R$ pointwise semicommutative if for any element $a\in R$ either $l(a)$ or $r(a)$ is an ideal of $R$. The class of pointwise semicommutative rings is a strict generalization of semicommutative rings. Since reduced rings are pointwise semicommutative, this paper studies sufficient conditions for pointwise semicommutative rings to be reduced. For a pointwise semicommutative ring $R$, $R$ is strongly regular if and only if $R$ is left SF; $R$ is exchange if and only if $R$ is clean; if $R$ is semiperiodic then $R/J(R)$ is commutative.
Ключевые слова:
pointwise semicommutative ring, semicommutative ring.
Поступило: 26.12.2022 Исправленный вариант: 24.01.2023
Дата публикации: 27.02.2024
Образец цитирования:
Sanjiv Subba, Tikaram Subedi, A. M. Buhphang, “Pointwise Semicommutative Rings”, Math. Notes, 114:6 (2023), 1350–1357
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mzm14290
|
|