Аннотация:
In this paper we study the existence of positive solutions of Berger's
equation with the Navier boundary condition
\begin{equation*}
\begin{cases}
\Delta^2 u-\biggl(a+b\displaystyle\int_\Omega |\nabla u|^2\biggr)\Delta
u=\lambda f(u), & x\in \Omega,
\\
u=\Delta u=0, &x\in \partial\Omega,
\end{cases}
\end{equation*}
where
$\lambda$
is a positive parameter,
$f\in C(\mathbb{R},\mathbb{R})$
is a
given function,
$a$ and $b$
are two constants with
$b\geq 0$,
and
$a+bt$
is allowed
to be negative for some
$t\geq0$.
The proof of the main results is based on the
topological degree theory.
\Bibitem{ZhaTon25}
\by T.~Zhang, X.~Tong
\paper Existence of positive solutions for a class of Berger's equations
\jour Math. Notes
\yr 2025
\vol 117
\issue 6
\pages 987--997
\mathnet{http://mi.mathnet.ru/mzm14813}
\crossref{https://doi.org/10.1134/S0001434625602047}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105015216380}