|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
MATHEMATICS
On the spectrum of the two-particle Schrödinger operator with point potential: one dimensional case
Utkir N. Kuljanov Samarkand State University, Samarkand, Uzbekistan
Аннотация:
In the paper, a one-dimensional two-particle quantum system interacted by two identical point interactions is considered. The corresponding Schrödinger operator (energy operator) $h_\varepsilon$ depending on $\varepsilon$ is constructed as a self-adjoint extension of the symmetric Laplace operator. The main results of the work are based on the study of the operator $h_\varepsilon$. First, the essential spectrum is described. The existence of unique negative eigenvalue of the Schrödinger operator is proved. Further, this eigenvalue and the corresponding eigenfunction are found.
Ключевые слова:
two-particle quantum system, symmetric Laplace operator, eigenvalue, eigenfunction, energy operator.
Поступила в редакцию: 19.08.2022 Исправленный вариант: 18.09.2023 Принята в печать: 19.09.2023
Образец цитирования:
Utkir N. Kuljanov, “On the spectrum of the two-particle Schrödinger operator with point potential: one dimensional case”, Наносистемы: физика, химия, математика, 14:5 (2023), 505–510
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nano1215 https://www.mathnet.ru/rus/nano/v14/i5/p505
|
|