|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
MATHEMATICS
On solutions to nonlinear integral equation of the Hammerstein type and its applications to Gibbs measures for continuous spin systems
Ismoil M. Mavlonova, Aloberdi M. Sattarovb, Sevinchbonu A. Karimovaa, Farhod H. Haydarovacd a National University of Uzbekistan, Tashkent, Uzbekistan
b University of Business and Science, Namangan, Uzbekistan
c Institute of Mathematics, Tashkent, Uzbekistan
d New Uzbekistan University, Tashkent, Uzbekistan
Аннотация:
The paper deals with the problem of constructing kernels of Hammerstein-type equations whose positive solutions are not unique. This problem arises from the theory of Gibbs measures, and each positive solution of the equation corresponds to one translation-invariant Gibbs measure. Also, the problem of finding kernels for which the number of positive solutions to the equation is greater than one is equivalent to the problem of finding models which has phase transition. In these articles, the number of solutions corresponding to the constructed kernels does not exceed 3, and in turn, it only gives us a chance to check the existence of phase transitions. The constructed kernels in this paper are more general than the kernels in the abovementioned papers and except for checking phase transitions, it allows us to classify the set of Gibbs measures.
Ключевые слова:
generalized SOS model, spin values, Cayley tree, gradient Gibbs measure, periodic boundary law
Поступила в редакцию: 07.11.2023 Исправленный вариант: 12.01.2024 Принята в печать: 14.01.2024
Образец цитирования:
Ismoil M. Mavlonov, Aloberdi M. Sattarov, Sevinchbonu A. Karimova, Farhod H. Haydarov, “On solutions to nonlinear integral equation of the Hammerstein type and its applications to Gibbs measures for continuous spin systems”, Наносистемы: физика, химия, математика, 15:1 (2024), 23–30
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nano1243 https://www.mathnet.ru/rus/nano/v15/i1/p23
|
| Статистика просмотров: |
| Страница аннотации: | 103 | | PDF полного текста: | 59 | | Список литературы: | 2 |
|