|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
MATHEMATICS
Approximation of eigenvalues of Schrödinger operators
J. F. Braschea, R. Fulscheb a Institut für Mathematik, Technische Universität Clausthal,
Erzstraße 1, 30867 Clausthal-Zellerfeld, Germany
b Institut für Analysis, Leibniz Universität Hannover,
Welfengarten 1, 30167 Hannover, Germany
Аннотация:
It is known that convergence of l. s. b. closed symmetric sesquilinear forms implies norm resolvent convergence of the associated self-adjoint operators and thus, in turn, convergence of discrete spectra. In this paper, in both cases, sharp estimates for the rate of convergence are derived. An algorithm for the numerical computation of eigenvalues of generalized Schrödinger operators in $L^2(\mathbb{R})$ is presented and illustrated by explicit examples; the mentioned general results on the rate of convergence are applied in order to obtain error estimates for these computations. An extension of the results to Schrödinger operators on metric graphs is sketched.
Ключевые слова:
Generalized Schrödinger operators, $\delta$-interactions, eigenvalues.
Поступила в редакцию: 15.12.2017 Исправленный вариант: 18.12.2017
Образец цитирования:
J. F. Brasche, R. Fulsche, “Approximation of eigenvalues of Schrödinger operators”, Наносистемы: физика, химия, математика, 9:2 (2018), 145–161
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nano147 https://www.mathnet.ru/rus/nano/v9/i2/p145
|
|