|
MATHEMATICS
Solvable models of quantum beating
R. Carlonea, R. Figaribc, C. Negulescud, L. Tentarellie a Università "Federico II" di Napoli, Dipartimento di Matematica e Applicazioni "R. Caccioppoli", MSA, via Cinthia, I-80126, Napoli, Italy
b INFN Sezione di Napoli,
MSA, via Cinthia, I-80126, Napoli, Italy
c Università "Federico II" di Napoli, Dipartimento di Fisica, MSA, via Cinthia, I-80126, Napoli, Italy
d Université de Toulouse & CNRS, UPS, Institut de Mathématiques de Toulouse UMR 5219,
F-31062 Toulouse, France
e Sapienza Università di Roma, Dipartimento di Matematica, Piazzale Aldo Moro, 5, 00185, Roma, Italy
Аннотация:
We review some results about the suppression of quantum beating in a one dimensional nonlinear double well potential. We implement a single particle double well potential model, making use of nonlinear point interactions. We show that there is complete suppression of the typical beating phenomenon characterizing the linear quantum case.
Ключевые слова:
nonlinear Schrödinger equation, weakly singular Volterra integral equations, quantum beating.
Поступила в редакцию: 07.02.2018 Исправленный вариант: 14.02.2018
Образец цитирования:
R. Carlone, R. Figari, C. Negulescu, L. Tentarelli, “Solvable models of quantum beating”, Наносистемы: физика, химия, математика, 9:2 (2018), 162–170
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nano148 https://www.mathnet.ru/rus/nano/v9/i2/p162
|
|