|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Mathematical problems of nonlinearity
On Quasi-Periodic Parametric Perturbations of Hamiltonian Systems
A. D. Morozov, K. E. Morozov Lobachevsky State University of Nizhni Novgorod,
prosp. Gagarina 23, Nizhni Novgorod, 603950 Russia
Аннотация:
We study nonconservative quasi-periodic $m$-frequency $\it parametric$ perturbations of twodimensional nonlinear Hamiltonian systems. Our objective is to specify the conditions for the existence of new regimes in resonance zones, which may arise due to parametric terms in the perturbation. These regimes correspond to $(m+1)$-frequency quasi-periodic solutions, which are not generated from Kolmogorov tori of the unperturbed system. The conditions for the existence of these solutions are found. The study is based on averaging theory and the analysis of the corresponding averaged systems. We illustrate the results with an example of a Duffing type equation.
Ключевые слова:
resonances, quasi-periodic, parametric, averaging method, limit cycles, invariant torus, phase curves, equilibrium states.
Поступила в редакцию: 20.02.2020 Принята в печать: 29.04.2020
Образец цитирования:
A. D. Morozov, K. E. Morozov, “On Quasi-Periodic Parametric Perturbations of Hamiltonian Systems”, Rus. J. Nonlin. Dyn., 16:2 (2020), 369–378
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nd716 https://www.mathnet.ru/rus/nd/v16/i2/p369
|
|