Russian Journal of Nonlinear Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Rus. J. Nonlin. Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Russian Journal of Nonlinear Dynamics, 2022, том 18, номер 5, страницы 859–872
DOI: https://doi.org/10.20537/nd221221
(Mi nd829)
 

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Nonlinear engineering and robotics

EMG-Based Grasping Force Estimation for Robot Skill Transfer Learning

W. Ali, S. Kolyubin

ITMO University, Kronverkskiy prosp. 49, Sankt-Peterburg, 197101 Russia
Список литературы:
Аннотация: In this study, we discuss a new machine learning architecture, the multilayer preceptron- random forest regressors pipeline (MLP-RF model), which stacks two ML regressors of different kinds to estimate the generated gripping forces from recorded surface electromyographic activity signals (EMG) during a gripping task. We evaluate our proposed approach on a publicly available dataset, putEMG-Force, which represents a sEMG-Force data profile. The sEMG signals were then filtered and preprocessed to get the features-target data frame that will be used to train the proposed ML model. The proposed ML model is a pipeline of stacking 2 different natural ML models; a random forest regressor model (RF regressor) and a multiple layer perceptron artificial neural network (MLP regressor). The models were stacked together, and the outputs were penalized by a Ridge regressor to get the best estimation of both models. The model was evaluated by different metrics; mean squared error and coefficient of determination, or r2 score, to improve the model prediction performance. We tuned the most significant hyperparameters of each of the MLP-RF model components using a random search algorithm followed by a grid search algorithm. Finally, we evaluated our MLP-RF model performance on the data by training a recurrent neural network consisting of 2 LSTM layers, 2 dropouts, and one dense layer on the same data (as it is the common approach for problems with sequential datasets) and comparing the prediction results with our proposed model. The results show that the MLP-RF outperforms the RNN model.
Ключевые слова: sEMG signals, multilayer perceptron regressor (MLP), random forest regressor (RF), recurrent neural network (RNN), robot grasping forces, skill transfer learning.
Финансовая поддержка
This work was supported by NIR-PRIKL project: development of models and algorithms for machine learning and nonlinear control for information and control systems of mobile service robots and their formations.
Поступила в редакцию: 13.09.2022
Принята в печать: 13.12.2022
Реферативные базы данных:
Тип публикации: Статья
MSC: 68T10
Язык публикации: английский
Образец цитирования: W. Ali, S. Kolyubin, “EMG-Based Grasping Force Estimation for Robot Skill Transfer Learning”, Rus. J. Nonlin. Dyn., 18:5 (2022), 859–872
Цитирование в формате AMSBIB
\RBibitem{AliKol22}
\by W.~Ali, S. Kolyubin
\paper EMG-Based Grasping Force Estimation for Robot Skill Transfer Learning
\jour Rus. J. Nonlin. Dyn.
\yr 2022
\vol 18
\issue 5
\pages 859--872
\mathnet{http://mi.mathnet.ru/nd829}
\crossref{https://doi.org/10.20537/nd221221}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4527657}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/nd829
  • https://www.mathnet.ru/rus/nd/v18/i5/p859
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025