Russian Journal of Nonlinear Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Rus. J. Nonlin. Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Russian Journal of Nonlinear Dynamics, 2024, том 20, номер 2, страницы 277–293
DOI: https://doi.org/10.20537/nd240204
(Mi nd894)
 

Mathematical problems of nonlinearity

Delayed Sliding Mode Control of Chaotic Systems

B. Hamidouchea, K. Guesmib, N. Essounboulib

a LAADI, Djelfa University, Cité Ain Chih B-P 3117, Djelfa, Algeria
b CReSTIC, Reims University, 2 Av. Robert Schuman, 51100 Reims, France
Список литературы:
Аннотация: This paper presents a comprehensive investigation of delayed sliding-mode control and synchronization of chaotic systems. The findings of this paper offer valuable insights into chaos control and synchronization and provide promising prospects for practical applications in various domains where the control of complex dynamical systems is a critical question. In this paper, we propose three approaches of control to regulate chaotic behavior and induce synchronization between the system’s state and its delayed value, by one period, of the unstable periodic orbits (UPOs). The stabilization ability of each controller is demonstrated analytically based on Lyapunov theory. Furthermore, we provide a bridge between classical stability and structural one through the use of the synchronization error, as an argument of the controller, instead of the classical tracking error.
Through three sets of simulations, we demonstrate the effectiveness of the proposed approaches in driving the chaotic system toward stable, simple, and predictable periodic behavior. The results confirm the rapid achievement of stabilization, even with changes in the sliding surface and control activation time point showing, hence, the approaches’ adaptability and reliability. Furthermore, the controlled system exhibits remarkable insensitivity to changes in initial conditions, thus showing the robustness of the proposed control strategies.
Ключевые слова: chaotic systems, sliding mode control, synchronization, time-delayed system, unstable periodic orbits, Rössler benchmark
Поступила в редакцию: 07.09.2023
Принята в печать: 21.12.2023
Тип публикации: Статья
MSC: 93D15
Язык публикации: английский
Образец цитирования: B. Hamidouche, K. Guesmi, N. Essounbouli, “Delayed Sliding Mode Control of Chaotic Systems”, Rus. J. Nonlin. Dyn., 20:2 (2024), 277–293
Цитирование в формате AMSBIB
\RBibitem{HamGueEss24}
\by B.~Hamidouche, K.~Guesmi, N.~Essounbouli
\paper Delayed Sliding Mode Control of Chaotic Systems
\jour Rus. J. Nonlin. Dyn.
\yr 2024
\vol 20
\issue 2
\pages 277--293
\mathnet{http://mi.mathnet.ru/nd894}
\crossref{https://doi.org/10.20537/nd240204}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/nd894
  • https://www.mathnet.ru/rus/nd/v20/i2/p277
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025